Tektronix

PCI Express Technology and Compliance Test Solutions

oscou

Agenda

- 1. Market Overview of PCI Express
 - 2. PCI Express Compliance Test Technology Overview
 - 3. PCIe Gen3/Gen4/Gen5 Tx Solution
 - 4. PCIe Gen3/Gen4/Gen5 Rx Solution
 - 5. Link EQ/PLL Solution
 - 6. Q&A

PCIe Market Intro

- PCI Express is a high performance, general purpose I/O interconnect used in a wide variety of computing & communications products. It has become especially popular for NVME SSD applications
- PCIe is based upon a point-to-point bus topology between a root-complex (system/host) & an end-point (add-in card) that supports full-duplex communications.
- The PCIe physical layer consists of:
 - Differential low-voltage signaling
 - 100MHz RefClk is either Common or Separate (SRIS/SRNS)
 - **Scalable widths:** x1, x2, x4, x8, x12, x16, x32
 - Scalable speeds: 2.5GT/s (Gen1), 5GTs (Gen2), 8GT/s (Gen3), 16GT/s (Gen4)
 - Utilizes connectors, e.g., CEM, U.2 (SFF-8639), M.2 or soldered directly to PCB
- Specifications are developed & maintained by the PCI-SIG, a consortium of >900 companies.

Technology Overview

BIG DATA, IOT AND ANALYTICS DRIVING NEED FOR COMPUTE POWER, STORAGE CAPACITY, AND NETWORK BANDWIDTH

PCI Express Overview

Architecture and Neighboring Technologies

PCI Express is emerging as the primary, high-performance storage bus and SSD Interface

PCIe SSD Forecasted to Lead in Datacenter EXPECTED TO OVERTAKE SAS IN 2017 & SATA IN 2018

Source: Q1'16 Intel NSG Market Forecasting

- PCI Express (PCIe) projected as leading SSD interface in DC by 2017
- PCIe bandwidth is significantly higher than SATA
- NVM Express (NVMe--SW interface) has lower latency than SAS or SATA
- Increasing focus on scalability using protocol-driven dynamic cloud management and virtual storage-decreasing CPU overhead and improving performance

Lane = Two (2) differential pairs (4 wires): one Tx & one Rx Link = Connection between two ports & their interconnecting lanes

PCI EXPRESS TERMINOLOGY

PCI-SIG DevCon June 2012, "PCI-SIG Architecture Overview"

PCI Express Terminology

- Silicon
 - Referred to as "Base"
 - No compliance testing
- Form Factors
 - CEM
 - U.2 (SFF-8639)
 - M.2
- Interoperability → Compliance
 - "If you don't own both ends of the link, then you are in the world of interoperability"
 - Compliance measurements → PCI-SIG Fixtures + SigTest (Pass/Fail only)
 - Full measurements \rightarrow DPOJet + SDLA64
- Chip-to-Chip (Embedded)
 - No Interoperability \rightarrow No Compliance
 - Full measurements \rightarrow DPOJet + SDLA64
 - SigTest isn't used since it is assumes PCI-SIG fixtures

PCI Express Standard Status

- PCIe Gen4 Base Standard (16Gt/s) rev 1.0 released in Q4 2017
- PCIe Gen4 CEM Standard in process
 - o Draft 0.7 test spec is under review
- Tektronix is participating in PCIe Gen4 Tx and Rx CEM FYI-only compliance testing at PCI-SIG workshops

o i.e. no vendors have been approved for PCIe Gen4 at this stage

PCIE Gen5 (32Gt/s) Base Spec rev 0.7 finalized March 2017

 $_{\odot}$ Base version 1.0 is expected to be released in early Q2 2019

 $_{\odot}$ Early RX test pathfinding is underway in the Intel PIL lab

Agenda

- 1. Market Overview of PCI Express
- ➡ 2. PCI Express Compliance Test Technology Overview
 - 3. PCIe Gen3/Gen4/Gen5 Tx Solution
 - 4. PCIe Gen3/Gen4/Gen5 Rx Solution
 - 5. Link EQ/PLL Solution
 - 6. Q&A

PCIe COMPLIANCE TESTING FOR INTEROPERABILITY

- PCIE holds regular compliance workshops/plugfests to certify individual devices' compliance and interoperability, typically 4x/yr
- Vendors who desire to be on PCI-SIG Integrator's List plan to attend PCI-SIG workshops where they must pass all four electrical tests & 80% of interoperability tests
- These vendors look at tests and test equipment and assume that if they buy & use the same equipment, they will pass the workshop electrical tests

PCIE 3.0 Electrical PHY Compliance Tests

Transmitter Testing

Receiver Jitter Tolerance Testing

Tx/Rx Link Equalization Testing

PLL Loop Bandwidth Testing

What Does "Compliance" Mean?

PCI-SIG Compliance Workshops host interoperability and compliance tests. **Interoperability** tests enable members to test their products against other members' products. **Compliance** tests allow for product testing against PCI-SIG test modules.

Both testing types issue "pass" or "fail" results for each test area examined. <u>To formally</u> <u>label products as compliant, they must score a minimum of 80 percent on interoperability</u> <u>tests and pass all required compliance tests.</u>

Compliance Equalization Presets

- Once in compliance mode, bursts (1ms) of 100 MHz clock can be used to cycle through various settings of compliance presets to perform **automated** jitter, voltage, timing measurements.
- 11 presets for both Gen3 and Gen4 (22 total). All preset values must be supported by DUT.
- For Rx AIC testing, BER < 1E-12 while receiving any valid preset/TXEQ, or < 1E-4 while receiving either P7 or P8

Preset #	Preshoot (dB)	De-emphasis (dB)
P4	0.0	0.0
P1	0.0	-3.5 ± 1 dB
PO	0.0	-6.0 ± 1.5 dB
Р9	3.5 ± 1 dB	0.0
P8	3.5 ± 1 dB	-3.5 ± 1 dB
P7	3.5 ± 1 dB	-6.0 ± 1.5 dB
P5	1.9 ± 1 dB	0.0
P6	2.5 ± 1 dB	0.0
Р3	0.0	-2.5 ± 1 dB
P2	0.0	-4.4 ± 1.5 dB
P10	0.0	Variable ¹

1. P10 levels are not fixed; its de-emphasis level is a function of the LF level that the Tx advertises during training. P10 is used to test the boost level of the Tx during full swing

Gen3 TX Gold Suite Test Plan

Toggle Preset	Signa Up	Preset Eq			
	Ln 0	Ln 3	Ln 7	Ln15	Ln 0
P0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
P1					\checkmark
P2					\checkmark
P3					\checkmark
P4					\checkmark
P5					\checkmark
P6					\checkmark
P7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
P8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
P9					\checkmark
P10					\checkmark
Pass					All must
condition	One p	oreset pe	r lane mu	st pass	pass

PCIE Reliance Upon Stable RefClk

Data transfer between two devices on the same PCB

Data transfer between main board and add-in board

Data transfer between multiple boards over a backplane

 PCIe RefClk provides a stable timing reference for the high-speed serial data transmission between two PCIe devices

 For reliable operation, RefClk must have low jitter

"Selecting the Optimum PCI Express Clock Source", Figure 2, page 2, Silicon Laboratories, Inc.

PCIe RefClk Architectures

 PCIe standard specifies a 100 MHz clock (Refclk) with greater than ±300 ppm frequency stability at both the transmitting and receiving devices and support for three distinct clocking architectures:

- Common most popular, supports SSC; same clock must be connected to all devices while maintaining skew <= 12 ns between devices
- Separate/independent used for cabled applications; SSC not historically used prior to Gen4; now becoming increasingly used via SRIS
- Data Clocked simplest to implement, but not very common

"Selecting the Optimum PCI Express Clock Source", Figure 3 page 3, Silicon Laboratories, Inc.

DPOJet for PCIe 1/2/3 RefClk IMPORTANCE OF ACCURATE PCIE REFCLK MEASUREMENTS

- PCIe RefClk signal has very tight jitter requirements even though it only operates @ 100MHz
- RefClk jitter has direct impact on the quality of the data transfer between PCIe Tx & Rx
- Clock-data recovery (CDR) process must be able to track those jitter frequencies that are within it's bandwidth, & limit those it cannot track
- The PCIe Base Spec defines the:
 - Untrackable jitter spectrum using <u>multiple</u> transfer functions (H1, H2, H3, etc.) that represent the loop bandwidths of the CDR & PLLs that affect the data recovery process
 - Overall transfer function, parameters (peaking & bandwidth), & jitter limits for each of the 3 clocking architectures (common, data clocked, & separate)

Agenda

- 1. Market Overview of PCI Express
- 2. PCI Express Technology Overview
- ➡ 3. PCIe Gen3/Gen4/Gen5 Tx Solution
 - 4. PCIe Gen3/Gen4/Gen5 Rx Solution
 - 5. Link EQ/PLL Solution
 - 6. Q&A

Testing Challenges in Tx

- Meet the requirements for effective testing
- Why so many presets? How to capture so many lanes?
- Measurement algorithms
- How to achieve required confidence level and beyond?

PCI Express Form Factors

28 MARCH 2019

PCIe Base vs Form Factor (CEM/U.2)

Measure for Base

Measure for CEM & U.2

PCIe Base vs CEM Testing

- What test point each type of testing addresses?
- How do we get to see the signal at the point of interest?

Base Spec Tx Testing

- Base Specification Measurements are defined at the pins of the transmitter
- Signal access at the pins is often not possible
- De-embedding is required to see what the signal looks like at the pins of the TX, without the added effects of the channel
- S-Parameters are acquired on the replica channel
- Measurement at TX pins can also be enabled by high fidelity probes, eg P7700

SDLA SERIAL DATA LINK ANALYSIS

CEM & U.2 Spec Tx Testing System & Add-In Card

- CEM Specification Measurements are defined at the slicer of a receiver
- Signal access is not possible
- Embedding of the compliance channel and package, as well as application of the behavioral equalizer is required
- SigTest or custom software like DPOJET will perform the embedding and calculate measurements

SFF-8639 Connector → U.2 Connector

Current SATA Connector

- Uses legacy SATA pin pitch
- Keyed to preclude the insertion of a non-SATA drive

Current SAS Connector

- Added additional signaling pins for a secondary port option at with a tighter, modern, pin pitch
- Supports both SATA and SAS drives

SFF 8639 Connector

- Fills out all remaining pin capacity of the legacy form factor
- Designed to support many protocols
- Enterprise mapping supports legacy SATA, SAS, and modern PCIe* drives simultaneously
- Both single port X4 and dual port X2 drives
- PCI-SIG Specification now at rev. 0.7

SSF 8639 connector expected to meet same CEM electrical requirements as standard PCIe connector

Source:SFF-8639 PCIe* SSD Ecosystem Readiness and Electrical Testing Update, Flash Memory Summit 2014

New PCI-SIG U.2 Compliance Fixtures SUPPORTED IN TEKEXPRESS

- Similar to CBB3
- Tests add-in cards
- 4 lanes

- Similar to CLB3
- Tests systems
- 4 lanes

Tektronix PCIE3 Tx Solution APPROVED FOR PCI-SIG INTEGRATOR'S LIST TESTING

System/Host Test Fixture

Compliance Load Board (CLB)

- Used for testing System Boards 0
- All Tx / Rx Lanes and Ref Clk routed to SMP 0
- Compliance Mode Toggle Switch 0
- Various types of Edge Connectors to support 0 different types of Slots on System Boards
- 0

AFG or AWG

System Board / Mother Board with Multiple Slots

Add-In Card Test Fixture

- Compliance Base Board (CBB)
 - Used for Testing Add-In cards
 - All Tx / Rx Lanes are routed to SMP
 - Compliance Mode Toggle Switch
 - Low Jitter Clean Reference Clock
 - Separate CBB for Gen 1/2/3

Gen3 U.2 Compliance Base Board (CBB3)

CBB with Multiple Slots of different widths and toggle switch

Automation Simplifies Tx Testing

- While convenient single capture capability is essential, automation makes the testing practical
- Iterate over multiple presets and lanes
- Gather results in a single report
- Provide means for quick switch to debugging and additional measurements
- Remove test fixture effects by using de-embedding

TekExpress for PCIe (Opt PCE3)

- TekExpress Automation for Tx Compliance with unique features including:
 - $\sqrt{\rm Sets}$ up the Scope and DUT for testing
 - ✓ Toggles thru and verifies the different Presets and Bit Rates
 - $\sqrt{}$ Tests multiple slots and lanes
 - $\sqrt{}$ Acquires the data
 - √ Processed with PCI-SIG SigTest
 - $\sqrt{10}$ Provides custom reporting

TekExpress - Setup

TekExpress – Test

TekExpress – Reports

tun	Overa Signa	ll Test Result 😧 Pas al Test Preset Test		Preferences				
	D	escription	Details	Generation	Pass/Fail	Value	Margin	
	ı و	Lane0			Pass			
itus		Unit Interval	Mean Unit Interval	8Gbps P07	🦁 Pass	125.0090 ps	L: 0.0465 ps H: 0.0235 ps	
ults		High Limit			🕜 Pass	125.0325		
		Low Limit			📀 Pass	124.9625		
orts		+ Mask Hits(All Bits)	Mask Hits	8Gbps P07	Pass	0.0000 hits	H: 0.0000 hits	=
		 Composit Eye Height 	Composit Eye Height	8Gbps P07	Pass	105.7689 mV	L: 71.7689 mV	
		 Transition Eye Diagram 	Min Transition Eye Height	8Gbps P07	Informative	107.2269 mV	N.A	
		 Transition Eye Diagram 	Min Transition Voltage	8Gbps P07	Pass	-0.1264 mV	L: 599.8736 mV	
		 Transition Eye Diagram 	Max Transition	8Gbps P07	Pass	0.1289 mV	H: 599.8711 mV	
		 Transition Eye Diagram 	Min Transition Top Margin	8Gbps P07	Pass	0.0259 mV	L: 0.0259 mV	
		 Transition Eye Diagram 	Min Transition Bottom Margin	8Gbps P07	Pass	-0.0314 mV	H: 0.0314 mV	
		 Transition Eye Diagram 	Transition Eye Mask Hits	8Gbps P07	Pass	0.0000 hits	H: 0.0000 hits	
		Non Transition Eye Diagram	Min Non Transition Eye Height	8Gbps P07	Informative	112.3181 mV	N.A	
		Non Transition Eye	Min Non Transition	8Gbps P07	🐼 Pass	-0.1274 mV	L: 599.8726 mV	

RF Switch and Auto Toggling

- Use RF switch to handle multiple lanes without reconnections
 - $\sqrt{Must provide termination to maintain compliance mode}$
 - $\sqrt{}$ Use programmatic interface to control from automation software
 - $\sqrt{}$ While switches typically have good signal quality at 4GHz, extra cables must be accounted for by de-embedding
 - $\sqrt{10}$ Design you device so that automatic toggling works for all presets

PCI Express Tx Test with RF Switch

Cable and RF Switch De-embed

<u>F</u> ile	Edit	⊻ertical	H <u>o</u> riz/Acq	Irig Di	isplay	Cursors	Mea <u>s</u> ure N	tas <u>k M</u>	ath MySc	ope <u>A</u> na	lyze <u>U</u> 6il	ities <u>H</u> elp			Tek		X
			TekExpr	ress PC	l Expr	ress - ((PCIE_DUT	п)*		+			Options	•	×		
M			Setup Status Results	1 DU 2 Tes 3 Acc	T st Sele quisitic	ction	DUT ID DU Acquire SigTest Mo Version Gen3 - 3.	JT001 Ilve wav de User 0 v	eforms r Defined	OUse p	tion	Slot Nu led waveform files Device Type System-Board	umber 01	Parase			And magazine
		40.0 40.0	Reports	4 Cor	nfigura eferenc	ation ces	Device Pr Data Rates 2.5 Gb/s 5 Gb/s 8 Gb/s Voltage Sw	Lini	k Analys 2.5 Gb/s 5 Gb/s	ils s	De-I	Embed Embed				8	/pt /1 11:22
	Jitte Sele Confi Rese Plo	ect gur ults ots		Status Rea	ady	U U	Even Selected Tr L0,L03,L0		8 Gb/s		V De-E	Embed Cable_ ed fx_Test_Embed01 est Equalization	de-embed.fit SigTes _SigTest_50G : Optimi	st T s4p ze T	Browse)	
	Rep	orts	Standard	_						-		-					

Testing Beyond Compliance

- What happens if a measurement fails Compliance?
- Could it be the channel?
 - Measurements can be taken before the channel to evaluate results
 - Different channel models can be created using SDLA Visualizer
- How does the optimized Rx setting compare to other settings?
 - Easily compare the results of multiple Equalization settings
- Does deeper analysis of the waveform need to be done?
 - PCIe specific measurements can be taken in Tektronix' measurement system DPOJET
 - Determine if data dependent, uncorrelated or pulse width jitter is in spec
 - Measurements filters and settings can be adjusted to get to root cause, but remember you must pass SigTest to be certified for compliance
- Is the Tx compliant?
 - NEW PCIe 3.0 base spec measurements are available to verify Tx compliance

PCI Express Tx MOIs

• 4 Tx MOIs (Methods of Implementation) available at:

http://www.tek.com/pci-express

Scroll down to Technical Documents \rightarrow Methods of Implementation

- 1. Gen3 Tx AIC (Add-In-Card) CEM MOI
- 2. Gen3 Tx System (Motherboard) CEM MOI
- 3. Gen3 Tx AIC (Add-In-Card) U.2 MOI
- 4. Gen3 Tx System (Motherboard) U.2 MOI

Tektronix PCIe Tx Solution

SX Scope utilizes patented ATI (asynchronous time interleaving) technology to provide best-in-class noise floor performance including 32GT/s (PCIe Gen5)

Gen4 Overview

Key Enhancements From PCIe Gen3

- Key attributes/requirements of PCIe 4.0
 - 16 GT/s, using scrambling, same as 8 GT/s, no encoding change
 - Reduction in Rj (random jitter) from 3ps (PCIe3) to ~1ps (PCIe4) [PCIe Base Spec, Table 9.8]
 - Maintains compatibility w/ PCIe installed base
 - o Connector enhanced electrically
 - Gen4 connector backwards-compatible with Gen1/2/3
 - Gen1/2/3 connector, however, will not accept Gen4 add-in cards
 - Limited channel: ~12", 1 connector; repeater (both redriver & retimer) for longer channels and/or 2nd connector
- New 'SRIS' independent RefClk modes
 - SRNS Separate RefClk Independent with No SSC Architecture
 - SRIS Separate RefClk Independent with SSC Architecture
- New Rx Lane Margining feature
- Rev 1.0 Base spec released in Oct 2017
- Rev 0.7 Base spec draft expected in Q3-2016

PCIe 4.0

Electrical Tests Under Development

Tx signal quality test at 16GT/s

End of channel eye diagram

Tx preset equalization test at 16GT/s

Preset 0 – Preset 10

16.0GT/s receiver test

Stressed eye receiver loopback test

Link equalization handshaking at 16GT/s

- Tx starts with correct preset requested through protocol
- Tx responds to protocol changes and adjusts
- · Rx correctly adjusts the link Tx and operates with a stressed eye

All 2.5/5.0/8.0GT/s Testing Still Required for 4.0 Integrators List for a 16GT/s Capable Device

PCIe 4.0 (System) Tx Signal Quality Test at 16 GT/s

PC

SIG

Channel Setup

- CLB plugs into system -> Variable ISI Board -> Scope
- 8dB at 8GHz of additional loss (including package embedding)
- Power on System
- Scope bandwidth = 25GHz
- 3dB package model embedded on scope
- Toggle DUT to transmit 16GT/s Compliance Pattern
 - 1ms pulse of 100MHz clock signal into Rx Lane0
- Capture 2.0M UI waveform for every Tx EQ Preset
- Waveforms post processed using SigTest
 - · Ref clock captured with data waveform and used for clock recovery
 - Behavioral Rx Equalization applied
 - Eye width & Eye height @ E-12
 - Each lane must pass SigTest analysis for at least one Tx EQ Preset
 - EW > 0.3UI (with TBD adjustment due to lack of cross-talk, etc. in test fixtures)
 - EH > 15mV (with TBD adjustment due to lack of cross-talk, etc. in test fixtures)

28 MARCH 2019

PCIe 4.0 (Add-in Card) Tx Signal Quality Test at 16 GT/s

PCI

SIG

Channel Setup

- Add-in Card plugs into CBB -> Variable ISI Board -> Scope
- 20dB at 8GHz of additional loss (including package embedding)
- Power on CBB
- Scope bandwidth is 25GHz
- 5dB package model embedded on scope
- Toggle DUT to transmit 16GT/s Compliance Pattern
 - 1ms pulse of 100MHz clock signal into Rx Lane0
- Capture 2.0M UI waveform for every Tx EQ Preset
- Waveforms post processed using SigTest
 - Time Domain CDR algorithm used to recover clock
 - Behavioral Rx Equalization applied
 - Eye width & Eye height @ E-12
 - Each lane must pass SigTest analysis for at least one Tx EQ Preset
 - EW > 0.3UI (with TBD adjustment due to lack of cross-talk, etc. in test fixtures)
 - EH > 15mV (with TBD adjustment due to lack of cross-talk, etc. in test fixtures)

PCIe 4.0 (Add-in Card) Tx Signal Quality Test at 16 GT/s

SIG

NEW Tx Gen4 Base Automation Solution

via TekExpress Automation Tool

		(
🎺 TekExp	ress PCI Express -	(Untitled)* Options	Allo
			start auto
Setup		Acquire live waveforms Use pre-recorded waveform files	Bas
Status	2 Test Selection	SigTest Mode Compliance	Das
	3 Acquisitions	Specification Device Type Version	
Results	Ĭ	BaseSpec V TX Test Board V Gen4 - 4.0 V	Ava
Reports	4 Configuration	Device Profile	70k
	5 Preferences	Data Rates Transmitter Equalization LinkAnalysis	
	T	Setup	
			press PCI Exp
		B Gb/s Presets Selected Presets for Signal Quality P0,P01,P02,P03,P04,P05,P06,P07,P08,P09,P10 Selected Presets for Signal Quality	
		✓ 16 Gb/s Presets P0,P01,P02,P03,P04,P05,P06,P07,P08,P09,P10	
		SSC Meas Limits	2 Test Sel
		On Off Setup	Acquisit
		Multi-Lane Automated DUT Control Setup	
		L0 Prompt me if Signal Check Fails	4 Configura
		Use Switch Matrix Setup Perform Pattern Decoding	5 Preferen
			T .
	Ready.		

Allows users to perform Gen4 Base silicon automated test and validation per the Gen4 PCIe Base spec, using either SigTest or DPOJET/SDLA characterization tools.

Available through existing **Opt PCE4** for applicable 70K DX and SX scopes

DUT	BaseSpec : `	TX Test Board :	Gen4 - 4.0	Deselect A	I) Select All	
Test Selection	Signal Tes	t Gen3 Preset Test	Gen4 Preset Test			
		Preset	Preshoot	Deemphasis	Dependencies	
Acquisitions	•	P0	0.0 dB	-6.0 dB	P04	
		P01	0.0 dB	-3.5 dB	P04	
Configuration		P02	0.0 dB	-4.4 dB	P04	
Conliguration		P03	0.0 dB	-2.5 dB	P04	
		P04	0.0 dB	0.0 dB	-	
Preferences		P05	1.9 dB	0.0 dB	P04	
		P06	2.5 dB	0.0 dB	P04	
		P07	3.5 dB	-6.0 dB	P05,P02	
		P08	3.5 dB	-3.5 dB	P06,P03	
		P09	3.5 dB	0.0 dB	P04	
		P10	0.0 dB	-9.5 dB	P04	
	Lanes			Show M	101	

DPOJet for PCIe1/2/3/4 RefClk MEASUREMENTS

Same as Gen3 RefClk but with Gen4 RefClk limits

Tektronix PCIe Tx Solution

SX Scope utilizes patented ATI (asynchronous time interleaving) technology to provide best-in-class noise floor performance including 32GT/s (PCIe Gen5)

Scope HW Requirements

 Compatible with DPO/DSA/MSO70000/C/D/DX/SX Series real-time oscilloscopes that meet the bandwidth requirements in the table below

PCI Express Generation & Data Rate	DPO/MSO70000 Series Bandwidth Recommended by PCI-SIG for Compliance Less bandwidth can be used for debug, but not for compliance testing			
Gen1 – 2.5 GT/s	6 GHz or higher			
Gen2 – 5 GT/s	12.5 GHz or higher			
Gen3 – 8 GT/s	12.5 GHz or higher			
Gen4 – 16 GT/s	25 GHz or higher.			

Model	Description	Opt PCE	Opt PCE3	Opt PCE4
DPO/DSA/MSO70404C	4 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s	\checkmark	\checkmark	
DPO/DSA/MSO70604C	6 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s	\checkmark	\checkmark	
DPO/DSA/MSO70804C	8 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s	\checkmark	\checkmark	
DPO/DSA/MSO71254C	12.5 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s	\checkmark	\checkmark	
DPO/DSA/MSO71604C	16 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s	\checkmark	\checkmark	
DPO/DSA/MSO72004C	20 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s	\checkmark	\checkmark	
DPO/DSA72504D	25 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s		\checkmark	\checkmark
DPO/DSA73304D	33 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s		\checkmark	
DPO/MSO72304DX	23 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s		\checkmark	
DPO/MSO72504DX	25 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s		\checkmark	
DPO/MSO73304DX	33 GHz DPO; 2 Ch, 100 GS/s or 4 Ch, 50 GS/s		\checkmark	
DPO72304SX	23 GHz DPO; 4 Ch: 23GHz: 50GS/s or 2 Ch: 23GHz: 100GS/s		\checkmark	
DPO73304SX	33 GHz DPO; 2 Ch, 33GHz, 100 GS/s or 4 Ch, 23GHz, 50 GS/s		\checkmark	\checkmark
DPS73308SX	33 GHz DPO System; 4 Ch: 33GHz: 100GS/s or 4 Ch: 23GHz: 50GS/s		\checkmark	\checkmark
DPO75002SX	50 GHz ATI; 1 Ch, 50GHz, 200 GS/s or 2 Ch, 33GHz, 100 GS/s		\checkmark	\checkmark
DPS75004SX	50 GHz ATI System; 2 Ch: 50GHz: 200GS/s or 4 Ch: 33GHz: 100GS/s		\checkmark	\checkmark
DPO75902SX	59 GHz ATI; 1 Ch, 59GHz, 200 GS/s or 2 Ch, 33GHz, 100 GS/s		\checkmark	\checkmark
DPS75904SX	59 GHz ATI System; 2 Ch: 59GHz: 200GS/s or 4 Ch: 33GHz: 100GS/s		\checkmark	\checkmark
DPO77002SX	70 GHz ATI; 1 Ch, 70GHz, 200 GS/s or 2 Ch, 33GHz, 100 GS/s		\checkmark	
DPS77004SX	70 GHz ATI System; 2 Ch: 70GHz: 200GS/s or 4 Ch: 33GHz: 100GS/s		\checkmark	

Testing Challenges in Tx

- Meet the requirements for effective testing
 - $\sqrt{10}$ Compliance mode support, proper patterns and toggling mechanism
 - $\sqrt{}$ Correct Tx equalization settings and preset and Lane ID encoding in Tx compliance pattern
- Why so many presets? How to capture so many lanes?
 √ The answer is test automation, RF switch
- Measurement algorithms

 $\sqrt{}$ Implemented in SigTest, or scope specific software

• How to achieve required confidence level and beyond?

 $\sqrt{}$ Length and number of waveforms (for Tx)

www.tek.com/pci-express

Tektronix Solutions on PCI-SIG

• • • • • • • • • • • • • • • • • • •			Ж
Welcome, Yu My Profile Public Site	e Sign Out Search P		PCI
PCI-SIG Members Area 🔻			SIG
Home 📄 Documents 🖂 Disc	cussions 💟 Voting		
		home » documents	s » <u>compliance program</u> » pcie 3.0 » electrical testing » tektro
Documents	E Tektronix		
earch for: Search PCI-SIG Members Area	Upload Document Download Selected as ZIP	o Upload or Click to Browse num File Size: 1024 MB	
Compliance Program	Title	Modified Date	Sort by: Title Date - Author Company Shared By Modified By Shared By
Configuration Testing	Kettronix Gen3 Link EQ MOI for System and Add-In Card Download (8.51 MB) Preview	Sep 11, 2018 Revision 2	Administrator
 Anritsu Keysight/Agilent 	Ektronix MOI for Gen3 RX AIC and SYS CEM Download (4.57 MB) Preview	Aug 1, 2018 Revision 1	Administrator
Tektronix Teledyne LeCroy	Ektronix MOI for Gen3 RX AIC and SYS CEM v1.0 Download (4.69 MB) Preview	Mar 22, 2018 Revision 2	Administrator
Protocol Testing Protocol Testing Test Source Code	Ektronix PLL Loop BW MOI for AIC using CEM and U.2 fixtures Download (1.83 MB) Preview	Jan 31, 2017	Administrator
PCle 4.0 ₩ Events	Ektronix MOI for Gen3 Tx for U.2 Systems Download (2.02 MB) Preview	Aug 24, 2016 Revision 1	Administrator
Images Integrators List Archive	Ektronix MOI for Gen3 Tx for U.2 Add-In Cards Download (2.04 MB) Preview	Aug 24, 2016 Revision 1	Administrator
📂 Procedures Center	- Taktronix MOL for Con3 Tx for CEM Systems	Aug 24, 2046	Administrator

Pathfinding for Gen5

0.7 REV OF BASE STANDARD IN PROCESS

- 32GT/s NRZ data rates and ~35dB channel loss, with no forward error correction
- 128/130b encoding, same as Gen3-4
- Typically 2 retimers, similar to Gen4
- TS1/TS2 ordered sets in 8b/10b encoding as well as 128/130b encoding will be enhanced to include 32GT/s
- Equalization flows will be similar to Gen3-4
- EIEOS will may be modified to include longer run lengths of 1's and 0's
- Compliance patterns will be identical to Gen4
- Raw BER remains at 1E-12
- TXEQ presets expected to be sufficient
- Backward compatibility with slower speeds still expected

5.0 Tx Jitter Parameters

		2.5 GT/s	5.0 GT/s	8.0 GT/s	16.0 GT/s	32.0 GT/s	
T _{TX-UTJ}	Tx uncorrelated total jitter	100 (max)	50 (max)	31.25 (max)	12.5 (max)	6.25 (max)	ps PP at 10- 12
T _{TX-UTJ-SRIS}	Tx uncorrelated total jitter when testing for the IR clock mode with SSC	100 (max)	66.51 (max)	33.83 (max)	15.85 (max)	7.93 (max)	ps PP at 10- 12
T _{tx-udjdd}	Tx uncorrelated Dj for non-embedded Refclk	100 (max)	30 (max)	12 (max)	6.25 (max)	3.125 (max)	ps PP
Т _{тх-upw-тj}	Total uncorrelated pulse width jitter	N/A	40 (max)	24 (max)	12.5 (max)	6.25 (max)	ps PP at 10- 12
T _{tx-upwdjdd}	Deterministic DjDD uncorrelated pulse width jitter	N/A	40 (max)	10 (max)	5 (max)	2.5 (max)	ps PP
T _{TX-RJ}	Tx Random jitter	N/A	1.4 - 3.6	1.4 - 2.2	0.45 - 0.89	.2345	ps RMS

Copyright © 2017 PCI-SIG® - All Rights Reserved

PCI

SIG

PCIe 5.0 Reference Clock

Table 9-22: Jitter Limits for CC Architecture

Notes:

1. The Refclk jitter is measured after applying the filter function in Figure 9-52

2. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real time oscilloscope with a sample rate of 20 GS/s or great. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation).

3. For the 16.0 GT/s and 32 GT/s CC measurement the SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content.

- 4. Note that 0.7 ps RMS is to be used in channel simulations to account for additional noise in a real system.
- Note that .35 ps RMS is to be used in channel simulations to account for additional noise in a real system with PLL limits of 1.25 and 2.5 MHz and a model CDR with a 20 Mhz bandwidth.
- Alternate measurement methodologies are being studied and the methodology could be changed in the .7 specification. It is possible a different measurement methodology could impact the specification limits and/or CDR and PLL specifications.

Copyright © 2017 PCI-SIG® - All Rights Reserved

PCI

SIG

5.0 Common Clock PLL Requirements

- The common clock PLL limits at 32 GT/s are 1.25 to 2.50 MHz
- The common clock reference CDR at 32 GT/s is 20 MHz first order
- A 5.0 base specification compliant device when operating at 8.0 or 16 GT/s must follow either:
 - PCIe 4.0 specification requirements for PLL bandwidth and Tx jitter at 8.0 and 16.0 GT/s
 - PCIe 5.0 specification requirements for PLL bandwidth and Tx at 8.0 and 16.0 GT/s as follows:
 - 16 GT/s T_{TX-UTJ} = 11.8 ps
 - 16 GT/s T_{TX-RJ} = .40 .84 ps RMS
 - 8 GT/s T_{TX-UTJ} = 30.55 ps
 - 8 GT/s T_{TX-RJ} = 1.29 2.18 ps RMS
 - Note only the Tx jitter limits that change are shown all other Tx jitter limits at 8.0 and 16.0 GT/s remain the same
 - Note these measurements are still performed with the PCIe 4.0 specification reference CDR for 16 GT/s

Reference Equalizer

CTLE

- Pole 1 4 GHz
- Pole 2 32 GHz
- -5 to -15 dB DC Gain
- Alternate CTLE options that better match the inverse of a typical channel response are being studied and it is likely the reference CTLE will be improved for .7 specification.

DFE

- 6 taps
- 20 mV maximum tap weight
 - The 20 mV maximum was used to indirectly limit the H1/H0 ratio with maximum loss channels. As more analysis is done for the .7 specification, including quantifying the benefit of precoding - this limit and/or the number of taps could change

CDR Offset

- -.3 UI max with a .05 UI step size from the sample position at the mean of the edges picking the offset that gives the largest eye area
 - · Note alternate figures of merit than eye area will be considered for the .7 revision of the specification

No AC Gain

- Eye Target at pad for channel compliance
 - 7.5 mV pp and .3 UI pp
- Current Direction Likely needs additional improvement in the reference CTLE for sufficient margins over HVM with 36 dB channels.
 - No change to DC gain range expected just better shaping/matching of typical channel inverse
 - Alternate CTLE proposals will be studied for inclusion in the .7 specification

7

PCI

SIG

Server/Storage Industry Update

IT'S TIME FOR PCIE GEN5 TO SHINE!

- PCIe Gen4 (16G) Base standard completed in Oct 2017
 - Workshop compliance testing began April 2017
 - Compliance/CEM standard complete by Q2 2018 (delayed)
- PCIe Gen5 (32G) Base standard 70% complete
 - Customers evaluating their readiness level for Gen5 now.
 - Test chips from leading customers expected in Q1 2018
- Emerging standards like CCIX, OpenCAPI, GenZ applying competitive pressure to PCIe5, primarily geared at 25G
 - Aimed at new emerging technology—cache memory management
 - If successful, will follow similar schedule as PCIe5

Tektronix

Thanks!

X

