【米尔-全志 T527 开发板-试用评测】-OpenCV手势识别
<h1>一、软件环境安装</h1><h3>1.安装OpenCV</h3>
<div>sudo apt-get install libopencv-dev python3-opencv</div>
<div></div>
<h3>2.安装pip</h3>
<div>sudo apt-get install python3-pip</div>
<div></div>
<p><span style="font-size: 24px;">二、OpenCV手势识别步骤</span><br />
<strong>1.</strong><strong>图像获取</strong>:从摄像头或其他图像源获取手部图像。使用OpenCV的VideoCapture类可以捕获视频流,或者使用imread函数加载图像。<br />
2.<strong>图像预处理</strong>:对图像进行预处理,以提高特征提取的准确性。常用的预处理操作包括灰度化、滤波、边缘检测、二值化、噪声去除和形态学处理等。<br />
灰度化:将彩色图像转换为灰度图像,去除颜色信息,简化图像。<br />
滤波:使用滤波器去除图像中的噪声。<br />
边缘检测:使用边缘检测算法提取图像中的边缘信息。<br />
二值化:将灰度图像转换为二值图像,将像素值分为黑色和白色。<br />
形态学处理:使用形态学操作增强手势轮廓。<br />
<strong>3.</strong><strong>特征提取</strong>:从预处理后的图像中提取手部特征。常用的特征包括形状特征、纹理特征和运动轨迹特征等。<br />
形状特征:提取手部轮廓、面积、周长、质心等形状特征。<br />
纹理特征:提取手部皮肤纹理、皱纹等纹理特征。<br />
运动轨迹特征:提取手部运动轨迹、速度、加速度等运动轨迹特征。<br />
<strong>4.</strong><strong>分类和识别</strong>:使用机器学习算法对提取的特征进行分类,以识别特定的手势。</p>
<p><span style="font-size: 24px;">三、代码实现</span><br />
# -*- coding: utf-8 -*-<br />
import cv2<br />
def reg(x):<br />
o1 = cv2.imread('paper.jpg',1)<br />
o2 = cv2.imread('rock.jpg',1)<br />
o3 = cv2.imread('scissors.jpg',1)<br />
gray1 = cv2.cvtColor(o1,cv2.COLOR_BGR2GRAY)<br />
gray2 = cv2.cvtColor(o2,cv2.COLOR_BGR2GRAY)<br />
gray3 = cv2.cvtColor(o3,cv2.COLOR_BGR2GRAY)<br />
xgray = cv2.cvtColor(x,cv2.COLOR_BGR2GRAY)<br />
ret, binary1 = cv2.threshold(gray1,127,255,cv2.THRESH_BINARY)<br />
ret, binary2 = cv2.threshold(gray2,127,255,cv2.THRESH_BINARY)<br />
ret, binary3 = cv2.threshold(gray3,127,255,cv2.THRESH_BINARY)<br />
xret, xbinary = cv2.threshold(xgray,127,255,cv2.THRESH_BINARY)<br />
contours1, hierarchy = cv2.findContours(binary1,<br />
cv2.RETR_LIST,<br />
cv2.CHAIN_APPROX_SIMPLE)<br />
contours2, hierarchy = cv2.findContours(binary2,<br />
cv2.RETR_LIST,<br />
cv2.CHAIN_APPROX_SIMPLE)<br />
contours3, hierarchy = cv2.findContours(binary3,<br />
cv2.RETR_LIST,<br />
cv2.CHAIN_APPROX_SIMPLE)<br />
xcontours, hierarchy = cv2.findContours(xbinary,<br />
cv2.RETR_LIST,<br />
cv2.CHAIN_APPROX_SIMPLE)<br />
cnt1 = contours1<br />
cnt2 = contours2<br />
cnt3 = contours3<br />
x = xcontours<br />
ret=[]<br />
ret.append(cv2.matchShapes(x,cnt1,1,0.0))<br />
ret.append(cv2.matchShapes(x,cnt2,1,0.0))<br />
ret.append(cv2.matchShapes(x,cnt3,1,0.0))<br />
max_index = ret.index(min(ret)) #计算最大值索引<br />
if max_index==0:<br />
r="paper"<br />
elif max_index==1:<br />
r="rock"<br />
else:<br />
r="sessiors"<br />
return r<br />
t1=cv2.imread('test1.jpg',1)<br />
t2=cv2.imread('test2.jpg',1)<br />
t3=cv2.imread('test3.jpg',1)<br />
# print(reg(t1))<br />
# print(reg(t2))<br />
# print(reg(t3))<br />
# ===========显示处理结果==================<br />
org=(0,60)<br />
font = cv2.FONT_HERSHEY_SIMPLEX<br />
fontScale=2<br />
color=(255,255,255)<br />
thickness=3<br />
cv2.putText(t1,reg(t1),org,font,fontScale,color,thickness)<br />
cv2.putText(t2,reg(t2),org,font,fontScale,color,thickness)<br />
cv2.putText(t3,reg(t3),org,font,fontScale,color,thickness)<br />
cv2.imshow('test1',t1)<br />
cv2.imshow('test2',t2)<br />
cv2.imshow('test3',t3)<br />
cv2.waitKey()<br />
cv2.destroyAllWindows()</p>
<p><span style="font-size: 24px;">四、实践</span></p>
<div><strong>1.程序运行</strong></div>
<div></div>
<div><strong>2. 原始图片</strong></div>
<div></div>
<div>3、识别结果</div>
<div>识别出剪刀 石头 布</div>
<div> </div>
<div></div>
<div></div>
<div></div>
<p><!--importdoc--></p>
<p>楼主分享的内容非常详细,希望有机会能实际测试</p>
<p>可以自己训练手势吗</p>
<p>也可以的</p>
<p> </p>
页:
[1]