Sipeed MAix BiT AIoT 开发套件测评-基础功能测试
<div class='showpostmsg'> 本帖最后由 zygalaxy 于 2024-7-12 17:31 编辑# K210核心功能验证
## 时间规划
- **评测第三天至第四天**
## 内容要点
### CPU性能测试
- 运行一系列基准测试代码,以评估处理器的运算速度与效率。
这里使用MicroPython开发,所以主要在开发板上运行MicroPython的性能测试代码。
由于时间的限制就从github上面找了一个micropython benchmarks的仓库
这是原作者:(https://github.com/shaoziyang/micropython_benchmarks "https://github.com/shaoziyang/micropython_benchmarks")
这是下面的测试的代码:
需要注意的是因为是maixpy的固件,获取时钟频率的方法是
```python
from Maix import freq
try:
print('System freq: {:.1f} MHz'.format(freq.get()))
except:
print('System freq: {:.1f} MHz'.format(freq.get_cpu()))
```
注意自行在源代码中更改
```python
import time
import machine
import gc
from Maix import freq
def pi(places=100):
extra = 8
one = 10 ** (places+extra)
t, c, n, na, d, da = 3*one, 3*one, 1, 0, 0, 24
while t > 1:
n, na, d, da = n+na, na+8, d+da, da+32
t = t * n // d
c += t
return c // (10 ** extra)
def pi_test(n = 5000):
t1 = time.ticks_ms()
t = pi(n)
t2 = time.ticks_ms()
r = time.ticks_diff(t2, t1)/1000
print('Pi', n, 'digit calculation: ', r, 's')
return '%.2f'%r
def int_add_test(n = 1000000, a = 12345, b = 56789):
t1 = time.ticks_ms()
sum = 0
for i in range(n):
sum = a + b
t2 = time.ticks_ms()
r = time.ticks_diff(t2, t1)/1000
print('Integer Add test', n, 'times: ', r, 's')
return '%.2f'%r
def float_add_test(n=1000000, a = 1234.5678, b = 5678.1234):
t1 = time.ticks_ms()
sum = 0
for i in range(n):
sum = a + b
t2 = time.ticks_ms()
r = time.ticks_diff(t2, t1)/1000
print('Float Add test', n, 'times:', r, 's')
return '%.2f'%r
def int_mul_test(n=1000000, a = 12345, b = 56789):
t1 = time.ticks_ms()
sum = 0
for i in range(n):
sum = a * b
t2 = time.ticks_ms()
r = time.ticks_diff(t2, t1)/1000
print('Integer Mul test', n, 'times: ', r, 's')
return '%.2f'%r
def float_mul_test(n=1000000, a = 1234.5678, b = 5678.1234):
t1 = time.ticks_ms()
sum = 0
for i in range(n):
sum = a * b
t2 = time.ticks_ms()
r = time.ticks_diff(t2, t1)/1000
print('Float Mul test', n, 'times: ', r, 's')
return '%.2f'%r
def int_div_test(n=1000000, a = 123456, b = 567):
t1 = time.ticks_ms()
sum = 0
for i in range(n):
sum = a // b
t2 = time.ticks_ms()
r = time.ticks_diff(t2, t1)/1000
print('Integer Div test', n, 'times: ', r, 's')
return '%.2f'%r
def float_div_test(n=1000000, a = 12345.678, b = 56.789):
t1 = time.ticks_ms()
sum = 0
for i in range(n):
sum = a / b
t2 = time.ticks_ms()
r = time.ticks_diff(t2, t1)/1000
print('Float Div test', n, 'times: ', r, 's')
return '%.2f'%r
def mem():
r = gc.mem_free()
print('free memory:', r)
print('Speed test')
try:
print('System freq: {:.1f} MHz'.format(freq.get()))
except:
print('System freq: {:.1f} MHz'.format(freq.get_cpu()))
print('\nCalcaulate integer addition')
gc.collect()
mem()
d1 = int_add_test()
d2 = int_add_test()
d3 = int_add_test()
r_int_add =min(d1, d2, d3)
print('Integer addition test result: ', r_int_add, 's')
mem()
print('\nCalcaulate float addition')
gc.collect()
mem()
d1 = float_add_test()
d2 = float_add_test()
d3 = float_add_test()
r_float_add = min(d1, d2, d3)
print('Float addition test result: ', r_float_add, 's')
mem()
print('\nCalcaulate integer multiplication')
gc.collect()
mem()
d1 = int_mul_test()
d2 = int_mul_test()
d3 = int_mul_test()
r_int_mul = min(d1, d2, d3)
print('Integer multiplication test result: ', r_int_mul, 's')
mem()
print('\nCalcaulate float multiplication')
gc.collect()
mem()
d1 = float_mul_test()
d2 = float_mul_test()
d3 = float_mul_test()
r_float_mul = min(d1, d2, d3)
print('Float multiplication test result: ', r_float_mul, 's')
mem()
print('\nCalcaulate integer division')
gc.collect()
mem()
d1 = int_div_test()
d2 = int_div_test()
d3 = int_div_test()
r_int_div = min(d1, d2, d3)
print('Integer division test result: ', r_int_div, 's')
mem()
print('\nCalcaulate float division')
gc.collect()
mem()
d1 = float_div_test()
d2 = float_div_test()
d3 = float_div_test()
r_float_div = min(d1, d2, d3)
print('Float division test result: ', r_float_div, 's')
mem()
print('\nCalcaulate Pi 1000 digit')
gc.collect()
mem()
try:
d1 = pi_test(1000)
d2 = pi_test(1000)
d3 = pi_test(1000)
r_pi_1000 = min(d1, d2, d3)
print('1000 digit Pi calculation result: ', r_pi_1000, 's')
mem()
except:
r_pi_1000 = None
print('calculation error')
print('Test result:')
print('Integer addition test result: ', r_int_add, 's')
print('Float addition test result: ', r_float_add, 's')
print('Integer multiplication test result: ', r_int_mul, 's')
print('Float multiplication test result: ', r_float_mul, 's')
print('Integer division test result: ', r_int_div, 's')
print('Float division test result: ', r_float_div, 's')
print('1000 digit Pi calculation result: ', r_pi_1000, 's')
```
跑完的结果如下:
通过数据能看出来CPU的性能是不错的
```python
>>> Speed test
System freq: 403.0 MHz
Calcaulate integer addition
free memory: 508064
Integer Add test 1000000 times:1.33 s
Integer Add test 1000000 times:1.331 s
Integer Add test 1000000 times:1.329 s
Integer addition test result:1.33 s
free memory: 507680
Calcaulate float addition
free memory: 507776
Float Add test 1000000 times: 2.616 s
Float Add test 1000000 times: 2.623 s
Float Add test 1000000 times: 2.62 s
Float addition test result:2.62 s
free memory: 411136
Calcaulate integer multiplication
free memory: 507616
Integer Mul test 1000000 times:1.522 s
Integer Mul test 1000000 times:1.504 s
Integer Mul test 1000000 times:1.521 s
Integer multiplication test result:1.50 s
free memory: 507328
Calcaulate float multiplication
free memory: 507552
Float Mul test 1000000 times:2.637 s
Float Mul test 1000000 times:2.634 s
Float Mul test 1000000 times:2.641 s
Float multiplication test result:2.63 s
free memory: 390848
Calcaulate integer division
free memory: 507488
Integer Div test 1000000 times:1.421 s
Integer Div test 1000000 times:1.37 s
Integer Div test 1000000 times:1.371 s
Integer division test result:1.37 s
free memory: 507200
Calcaulate float division
free memory: 507424
Float Div test 1000000 times:2.696 s
Float Div test 1000000 times:2.7 s
Float Div test 1000000 times:2.697 s
Float division test result:2.70 s
free memory: 366688
Calcaulate Pi 1000 digit
free memory: 507360
Pi 1000 digit calculation:0.126 s
Pi 1000 digit calculation:0.125 s
Pi 1000 digit calculation:0.122 s
1000 digit Pi calculation result:0.12 s
free memory: 218880
Test result:
Integer addition test result:1.33 s
Float addition test result:2.62 s
Integer multiplication test result:1.50 s
Float multiplication test result:2.63 s
Integer division test result:1.37 s
Float division test result:2.70 s
1000 digit Pi calculation result:0.12 s
```
### KPU应用尝试
- 利用预置模型进行图像识别或简单物体检测,评估AI加速器的性能。
这里我们去(https://maixhub.com/ "maixhub") 找一个人脸检测的模型进行测试 -人脸检测模型https://maixhub.com/model/zoo/68
解压下载后的的压缩包可以找到要运行的模型和测试模型的代码
### 文末可以下载
模型我们可以放在flash中读取并运行也可以放在SD卡中进行读取并运行,这里为了检测就直接使用`kflash`工具刷入指定的flash地址。
然后将代码放入IDE进行运行
注意这里的屏幕可能会出现反转和镜像,修改如下代码为
```
# sensor.set_hmirror(sensor_hmirror)
# sensor.set_vflip(sensor_vflip)
sensor.set_hmirror(True)
sensor.set_vflip(True)
```
```python
import sensor, image, lcd, time
import KPU as kpu
import gc, sys
def lcd_show_except(e):
import uio
err_str = uio.StringIO()
sys.print_exception(e, err_str)
err_str = err_str.getvalue()
img = image.Image(size=(224,224))
img.draw_string(0, 10, err_str, scale=1, color=(0xff,0x00,0x00))
lcd.display(img)
def main(model_addr=0x300000, lcd_rotation=0, sensor_hmirror=False, sensor_vflip=False):
try:
sensor.reset()
except Exception as e:
raise Exception("sensor reset fail, please check hardware connection, or hardware damaged! err: {}".format(e))
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_hmirror(sensor_hmirror)
sensor.set_vflip(sensor_vflip)
sensor.run(1)
lcd.init(type=1)
lcd.rotation(lcd_rotation)
lcd.clear(lcd.WHITE)
anchors = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025)
try:
task = None
task = kpu.load(model_addr)
kpu.init_yolo2(task, 0.5, 0.3, 5, anchors) # threshold:, nms_value:
while(True):
img = sensor.snapshot()
t = time.ticks_ms()
objects = kpu.run_yolo2(task, img)
t = time.ticks_ms() - t
if objects:
for obj in objects:
img.draw_rectangle(obj.rect())
img.draw_string(0, 200, "t:%dms" %(t), scale=2)
lcd.display(img)
except Exception as e:
raise e
finally:
if not task is None:
kpu.deinit(task)
if __name__ == "__main__":
try:
main( model_addr=0x300000, lcd_rotation=0, sensor_hmirror=False, sensor_vflip=False)
# main(model_addr="/sd/m.kmodel")
except Exception as e:
sys.print_exception(e)
lcd_show_except(e)
finally:
gc.collect()
```
此时我们寻找一张全家福查看识别的结果
我们可以看到单人人脸检测的帧率还是非常高的,而且在多人的情况下,帧率也在一个比较理想的范围,由此可见其kpu算力的强大。
- k210还有一些其他比较强大的功能,如色块的检测
```python
import sensor
import image
import lcd
import time
lcd.init()
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.run(1)
green_threshold = (0, 80,-70, -10, -0, 30)
while True:
img=sensor.snapshot()
blobs = img.find_blobs()
if blobs:
for b in blobs:
tmp=img.draw_rectangle(b)
tmp=img.draw_cross(b, b)
c=img.get_pixel(b, b)
lcd.display(img)
```
### I/O与外设交互
- 测试GPIO控制、SPI、I2C等接口功能,确保与外部设备通信无碍。
目前手头只有I2C的光照强度传感器BH1750,所以以为基础来测试k210的I2C功能。
如下代码可以查看当前光照强度:
```python
from machine import I2C
import time
# 初始化I2C
i2c = I2C(I2C.I2C0, freq=100000, scl=25, sda=24)
def read_bh1750():
# 发送测量命令
i2c.writeto(0x23, bytearray())
time.sleep(0.018) # 等待测量完成
# 读取数据
data = i2c.readfrom(0x23, 2)
lux = ((data << 8) | data) / 1.2
return lux
# 持续读取光照强度
while True:
lux = read_bh1750()
print("Lux:", lux)
time.sleep(1) # 每秒读取一次,可以根据需要调整时间间隔
```
可以看到已经能够读取当前的光照强度了
光照强度的检测在识别中还是很重要的一个因素,当环境光较暗的时候可以通过补光来达到更好的识别效果。
其他的接口与功能会在后续的项目中进行使用~
---</div><script> var loginstr = '<div class="locked">查看本帖全部内容,请<a href="javascript:;" style="color:#e60000" class="loginf">登录</a>或者<a href="https://bbs.eeworld.com.cn/member.php?mod=register_eeworld.php&action=wechat" style="color:#e60000" target="_blank">注册</a></div>';
if(parseInt(discuz_uid)==0){
} </script><script type="text/javascript">(function(d,c){var a=d.createElement("script"),m=d.getElementsByTagName("script"),eewurl="//counter.eeworld.com.cn/pv/count/";a.src=eewurl+c;m.parentNode.insertBefore(a,m)})(document,523)</script> <p>光照强度的检测在识别中还是很重要的一个因素,当环境光较暗的时候可以通过补光来达到更好的识别效果。</p>
<p>这就是补光的意义</p>
页:
[1]