2381|0

2015

帖子

0

TA的资源

纯净的硅(中级)

楼主
 

关于TMS320C64x+ DSP-----Cache 优化cache [复制链接]

一、cache性能特点
      优异的cache性能很大程度上依赖于cache lines的重复使用,优化的最主要目标也在于此,一般通过恰当的数据和代码内存布置,以及调整CPU的内存访问顺序来达到此目的。由此,应该熟悉cache内存架构,特别是cache内存特点,比如line size, associativity, capacity, replacement scheme,read/write allocation, miss pipelining和write buffer.另外,还需要知道什么条件下CPU STALLS会发生以及产生延时的cycle数。只有清楚了这些,才能清楚如何优化cache。
二、优化cache
      L1 cache的特点(容量、associativity、linesize)相对于L2 cache来说更具局限性,优化了L1 cache几乎肯定意味着L2 cache也能得到有效使用。通常,仅优化L2 cache效果并不理想。建议将L2 cache用于一般的类似控制流程等大量内存访问无法预测的部分。L1和L2 SRAM应该用于时间性非常重要的信号处理算法。数据能够用EDMA或IDMA直接导入L1 SRAM,或用EDMA导入L2 SRAM。这样,可使L1 cache的mem访问效率获得优化。
    有两种重要方法来减少cache ovehead:
1. 通过以下方式减少cache miss数量(L1P,L1D,L2 cache):
a. cache line reuse最大化
>访问cached行中的所有mem位置(应该是对多路组相联才有效,直接映射地址是一对一的)。进入cache行中的数据花费了昂贵的stall cycles,应该被使用;
>cached line中的同一内存位置应该尽可能的重复使用。
b. 只要一行被使用,将要避免牺牲该行
2. 利用miss pipelining,减少每次miss的stall cycles数
    cache优化的最好策略是从上到下的方式,从应用层开始,到程序级,再到算法级别的优化。应用层的优化方法通常易于实现,且对整体效果改善明显,然后再配合一些低层次的优化策略。这也是通常的优化顺序。
应用层级应考虑的几点:
>用DMA搬进/出数据,DMA buffer最好分配在L1或L2 SRAM,出于以下考虑。首先,L1/L2 SRAM更靠近CPU,可以尽量减少延迟;其次,出于cache一致性的考虑。
>L1 SRAM的使用。C64x+提供L1D 和L1P SRAM,用于存放对cache性能影像大的代码和数据,比如:
@ 至关重要的代码或数据;
@ 许多算法共享的代码或数据;
@ 访问频繁的代码或数据;
@ 代码量大的函数或大的数据结构;
@ 访问无规律,严重影像cache效率的数据结构;
@ 流buffer(例如L2比较小,最好配置成cache)
因为L1 SRAM有限,决定哪些代码和数据放入L1 SRAM需要仔细考虑。L1 SRAM 分配大,相应L1 cache就会小,这就会削弱放在L2和外部内存中代码和数据的效率。 如果代码和数据能按要求导入L1 SRAM,利用代码和/或数据的重叠,可以将L1 SRAM设小点。IDMA能够非常快的将代码或数据page到L1。如果代码/数据是从外部page进来,则要用EDMA。但是,非常频繁的paging可能会比cache增加更多的overhead。所以,必须在SRAM和cache大小之间寻求一个折中点。
>区别signal processing 和 general-purpose processing 代码
后者通常并行性不好,执行过程依赖于许多条件,结果大多无法预测,比如滤波模块,数据内存访问大多随机,程序内存访问因分支条件而异,使得优化相当困难。鉴于此,当L2不足以放下整个代码和数据时,建议将其代码和数据放到片外,并允许L2 能cache访问到。这样腾出更多的L2 SRAM空间存放易于优化,结构清晰的前者代码。由于后者代码的无法预测性,L2 cache应该是设的越大越好(32k~256k). 前者比较有规律的代码和数据放到L2 SRAM或L1 SRAM更为有利。放到L2,可以允许你根据CPU对数据的访问方式来修改算法,或调整数据结构,以获得更好的cache友好性。放到L1 SRAM,无需任何cache操作,并且除非bank冲突,无需做memory 优化。
procedural级的优化:    优化目的是减少cache miss,以及miss带来的stall数。前者可通过减少被cache的内存大小并重复使用已经cached lines来获得。尽量避免牺牲行并尽可能写已经分配的行可以提高重用率。利用miss pipelining可以减少stall数。以下根据三种不同类型的读miss来分析优化的方法。
>选用合适的数据类型,以减少内存需要
16位可以表示的数不要定义成32位,这不但可以省一半内存消耗,而且减少compulsory miss。这种优化容易修改,无需改动算法,而且小数据类型容易实现汇编的SIMD。在不同系统平台端口间的数据流动,容易出现这种低效的数据类型。
>处理链
前一算法的输出是后一算法的输入。如果输出、输入不是同一级内存地址,后一算法使用前一算法结果时就存在读miss的消耗。这个时候就要考虑两者空间如何布置。如果超过两个数组映射到L1D的同一个set,则会产生conflict miss(L1D cache是2-way set-associative),故应该将这些数组连续分配(why???)(详见P55)
>避免L1P conflict miss
    即使cpu需要的指令全在L1P cache(假定无capacity miss),仍然可能会产生conflict miss。以下解释conflict miss是如何产生的,又如何通过code在内存中的连续存放来消除miss。例如:
for(i=0; i {   function_1();   function_2(); }
如果func2在L2中的位置正好与func1有部分处于同一set中,而L2 cache是4-way set-associativity,处于同一set的指令在被L1P cache循环读取后,可能会出现conflict miss(如刚读入func1,然后读入func2,可能会驱逐掉func1在L1P中的部分cache lines).这种类型的miss是完全可以消除掉的,通过将这两个函数的代码分配到不冲突的set中,最直接具体的方法是将这两个函数在内存中连续存放
 
点赞 关注

回复
举报
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/7 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表