1442|13

2576

帖子

0

资源

五彩晶圆(中级)

【大学生电子竞赛题目分析】——2015年全国赛E题《80MHz~100MHz频谱分析仪》 [复制链接]

 
本帖最后由 gmchen 于 2022-2-17 14:29 编辑

 

一、任务

设计制作一个简易频谱仪。频谱仪的本振源用锁相环制作。频谱仪的基本结构图如图所示。

image-20220217142858-1.png  

二、要求

1、基本要求

制作一个基于锁相环的本振源:

1)频率范围           90MHz~110MHz

2)频率步进           100kHz

3)输出电压幅度   10~100mV,可调;

4)在整个频率范围内可自动扫描;扫描时间在1~5s之间可调;可手动扫描;还可预置在某一特定频率;

5)显示频率;

6)制作一个附加电路,用于观测整个锁定过程;

7)锁定时间小于1ms 

2、发挥部分

制作一个 80MHz~100MHz 频谱分析仪:

1)频率范围     80MHz~100MHz       

2)分辨率       100kHz               

3)可在频段内扫描并能显示信号频谱和对应幅度最大的信号频率;          

4)测试在全频段内的杂散频率(大于主频分量幅度的2%为杂散频率)个数;

5)其他。

三、说明

在频谱仪滤波器的输出端应有一个测试端子,便于测量。

 

 

此帖出自电子竞赛论坛

回复

2576

帖子

0

资源

五彩晶圆(中级)

题目分析与方案设计

本题的题目是频谱分析仪,但是基本要求仅仅是一个基于锁相环的频率合成器,提高要求才是一个频谱分析仪。

满足本题要求的锁相环电路较多,例如MC145151-2MC145152-2ADF4001ADF4002等。

MC145151-2MC145152-2是一款比较老的芯片,它包含一个鉴频-鉴相器、一个RF信号分频器N与一个参考信号分频器R。两个芯片均需外接VCO。内部分频器的分频系数通过并行输入方式进行预置,两者的区别是MC145151只能工作在单模分频状态而MC145152可以工作在双模分频状态(对于本题来说单模已经足够了)。芯片的RF信号与参考信号的最高工作频率随电源电压以及分频系数等不同而改变,在5V供电条件下大约为15MHz。由于此频率不高,所以在较高频率工作时需要外接高速预分频电路。

下图是一个基于MC145151-2的频率合成器参考电路。电路采用无源RC超前-滞后型环路滤波器,用振荡器芯片MC1648加变容二极管与电感构成VCO,用高速运放将输出信号放大,用高速预分频电路MC12080将题目要求的90MHz~110MHz信号分频到MC145151允许的输入频率范围15MHz之内。由于这几个芯片的直流电平相互不匹配,所以全部采用电容耦合方式进行信号传输。

image.png

MC145151-2内部包含参考信号振荡电路,只要外接石英谐振器即可产生参考频率fxtrl,实际加到鉴相器的参考频率fr = fxtrl/R。输出信号经过预分频PMC145151-2内部的N分频后反馈到鉴相器,所以此频率合成器的输出频率为

  image.png  通常分频系数RP在设计确定后不再改变,而通过改变N可改变锁相环的输出频率,所以频率步进值为fxtrl /R


回复

2576

帖子

0

资源

五彩晶圆(中级)

对于这样一个基于PLL的频率合成器电路来说,设计步骤大致如下:

1、确定VCO的频率范围。

按照题目的要求,频率范围大于90MHz~110MHz,可根据此频率范围选择振荡器芯片以及相应的变容二极管与电感。此参考电路选用MC1648的最高振荡频率高达225MHz,完全满足本题目要求。变容二极管在其控制电压为0~VDD之间变化时,容量变化应该大于2(fmax/fmin)2。电感应该根据变容二极管的容量以及振荡频率确定。

2、确定输入鉴相器的参考信号频率fr = fxtrl /R

这个频率就是频率合成器的频率步进值。按照题目的要求,此值应该不大于100kHz,可以选择100kHz,或其他可整除的频率如50kHz20kHz10kHz等。然后根据选定的fr,选择合适的石英晶体频率fxtrl 以及分频系数R

3、确定锁相环的自然频率ωn与阻尼因子ζ。这两个参数为锁相环的重要参数,确定它们的依据有如下几项:

a) 为了降低锁相环输出的相位抖动,要求锁相环的自然频率远低于输入鉴相器的参考信号频率,大致关系是

image.png  b) 阻尼因子ζ反映了锁相环的稳定程度。ζ越小锁相环的稳定性越差,但过大的ζ会导致锁相环的反应迟钝,通常在频率合成器电路中选取

ζ = 0.7~1.0

4、根据自然频率与阻尼因子计算环路滤波器元件参数。

上图参考电路中,锁相环电路的自然频率、阻尼系数与元件参数的关系如下:

image.png  其中鉴相-鉴频器PFD的增益: image.png

VCO的增益 

image.png

VCO输出到PFD的分频系数  n=P·N

根据上述关系可计算环路滤波器元件参数值。

再次提醒,上述所有关系式都是基于前面的参考电路得到的。若选用不同的鉴相器输出端或不同的环路滤波器,前述表达式可能是不同的,具体情况可参见芯片数据手册以及本文末指出的参考文献第2章。

 


回复

2576

帖子

0

资源

五彩晶圆(中级)

5、对于本题来说,题目还给出另一个要求:锁定时间小于1ms

关于锁相环的锁定时间,可以这样理解:若在锁相环工作的过程中突然改变鉴相器的某个输入信号频率,例如突然改变分频系数N,则由于鉴相器的两个输入频率不同,将迫使锁相环进入失锁状态。随后在反馈系统的作用下,VCO的输出频率开始改变,使得加到鉴相器的反馈信号不断逼近参考信号,直至最终锁相环重新锁定。这个过程所需的时间就是锁相环的锁定时间。

显然,锁定时间与初始时刻加在鉴相器输入端的两个信号的频差大小有关。另外,它还与采用哪种类型的鉴相器有关,下面所有的关系都针对前面给出的参考电路中PFD结构的鉴相器。

当初始时刻加在鉴相器输入端的两个信号的频差不大,满足 image.png  时,锁相环可以在一个自然频率周期内重新锁定,此时的锁定时间

image.png

 当加在鉴相器输入端的两个信号的初始频差大于 image.png  后,锁定时间将加大。对于如上图所示的采用PFD型鉴相器以及无源RC超前-滞后环路滤波器的锁相环,其锁定时间为

image.png  其中ΔωoVCO的初始输出频率与最终锁定频率之间的频差,n=P·N是从VCO输出到PFD的分频系数,KoVCO的增益。

要指出的是:本题的要求中并未指定锁相环的锁定时间是在什么初始频差下测量的,这应该是题目的一个漏洞。但考虑到题目中的频率合成器是作为频谱分析仪的信号源使用的,其输出频率通常按照设计的频率步进值逐步改变,故可以将频率步进值作为初始频差代入前面的公式计算锁定时间(注意频率步进值并不是加在鉴相器输入端的频差)。

显然,上述步骤3与步骤5中各关系式都与ωn有关,但由于从不同的角度出发,两者得到的结果可能会相互牵制甚至矛盾,有时可能需要作适当的调整与折衷。

 


回复

2576

帖子

0

资源

五彩晶圆(中级)

题目中还有一个要求是观察锁相环的锁定过程。

可以通过观察VCO的输入端电压变化完成此要求。具体做法是改变频率合成器的反馈分频系数,此时锁相环必然进入失锁状态,鉴相器随之输出一个调整电压,这个调整电压经过环路滤波器后加到VCO的控制电压输入端。由于VCO的输出按照控制电压的变化而变化,所以用示波器在VCO输入端观察这个调整电压的变化过程就反映了锁相环的阶跃响应过程,也就是从失锁到重新锁定的动态过程。


回复

2576

帖子

0

资源

五彩晶圆(中级)

ADF4001与ADF4002是另外两个常用的频率合成器锁相环芯片,它们的内部结构与MC145151-2与MC145152-2大致相同,但性能要好很多,主要区别如下:

1、频率响应不同。

MC145151-2或MC145151-2的频率响应最高只有25MHz,但ADF4001与ADF4002的频响要高得多。

ADF4001的频响高达200MHz(反馈输入)和104MHz(参考输入),ADF4002更高达400MHz(反馈输入)和300MHz(参考输入)。由于频响很高,所以这两个芯片的反馈回路中不需要再加入高速预分频电路。

2、分频电路不同。

MC145151-2的反馈信号分频器(N分频器)为14bit,分频系数为3~16383连续可变。参考信号分频器(R分频器)的分频系数为8~8192,但并不连续,只有8个系数可以选用。

ADF4001与ADF4002的N分频器为13bit,分频系数为1~8191连续可变;R分频器为14bit,分频系数为1~16383连续可变。

另外,MC145151-2和145152-2的分频系数为并行输入,而ADF4001与ADF4002的分频系数采用3线串行接口输入。

3、鉴频-鉴相器(PFD)的输出结构不同。

MC145151-2或MC145151-2的PFD输出为电压型:当反馈相位落后于参考相位时输出高电平(VDD)、反馈相位超前于参考相位时输出低电平(0)、两个相位相同时输出为高阻态。

ADF4001与ADF4002的PFD输出为电流型(带带电荷泵的PFD):当反馈相位落后于参考相位时输出电流向外灌(source)、反馈相位超前参考相位时输出电流向内吸(sink)、两个相位相同时输出为高阻态。“灌”与“吸”的电流大小可以通过一个寄存器由用户定义。这种结构的PFD具有比电压型PFD更加稳定的鉴相器增益,其后的环路滤波器中只有R2与C,而R1的等效阻值由用户定义的电流大小确定,可参见参考文献第2章。


回复

2576

帖子

0

资源

五彩晶圆(中级)

题目的提高要求是设计一个完整的频谱分析仪。

频谱分析仪是通用的高频测试仪器之一,大致有两种不同的结构:一种是直接将信号按频率分解,称为实时频谱分析仪。通常采用的方法是将信号高速采样,然后用FFT算法分解频谱。这种结构需要一个高速ADC模块,常见于高速示波器中作为一个附加分析功能,也见于基于计算机的虚拟测量仪器中。

另一种是如本题采用的类似超外差接收机的结构,称为扫描调谐式频谱分析仪。

扫描调谐式的频谱分析仪的框图如题图,工作原理是:输入信号fS与本振fL混频,产生和频与差频分量,后续的选频网络选出其中一个分量(通常为差频分量fI=fL-fS),当本振幅度不变时,这个差频分量的幅度与输入信号中对应的频谱分量成比例。连续改变本振频率fL,就得到了输入信号的频谱。


回复

2576

帖子

0

资源

五彩晶圆(中级)

扫描调谐式频谱分析仪有几个设计的要点。

第一、镜像频率干扰问题。

例如本题已经规定了本振频率90MHz~110MHz,待测频率为80MHz~100MHz,所以选频网络的中频fI=10MHz。但是当本振频率为90MHz时,输入信号中80MHz100MHz的频率成分与90MHz混频后都有10MHz的分量,都会被选频网络选中,这就是镜像干扰。

若输入信号的频率范围小于中频频率的2倍,且在前置放大器中插入相应的带通滤波器将输入信号频率范围以外的信号全部滤除,则理论上可以避免镜像频率干扰。但实际上不可能有砖墙式的带通滤波器,所以只有输入频率范围远小于中频频率的2倍时,上述方法才是有效的。而本题规定输入信号的频率范围为80MHz~100MHz,它恰恰等于中频频率的2倍,所以按照题目给出的电路结构,输入信号频率为80MHz(本振频率为90MHz)附近受100MHz的镜像干扰不可避免。

在商品扫描调谐式频谱分析仪中,输入仪器的信号频率范围很宽,通常总是大于中频的2倍,此种情况下输入端固定的带通滤波器无法滤除镜像干扰频率,所以采用调谐滤波技术来抑制镜像频率干扰。该方法将输入信号放大器中的带通滤波器改为通带频率可变的带通滤波器(调谐滤波器),只要令其通带频率始终跟随需要分析的输入信号频率,而对于镜像频率有较大的衰减,就可以消除镜像频率干扰。

在本题目中采用这个技术。令调谐滤波器的通带频率始终比本振频率低一个中频频率,当本振频率为90MHz时,该调谐滤波器的通带频率为80MHz。只要该滤波器有合适的Q值,对于100MHz的镜像频率有很大的衰减,就可以消除镜像频率干扰。实际电路可以用变容二极管与电感构成谐振频率可变的LC谐振回路,用MCU控制加在变容二极管上的调谐电压即可改变其谐振频率。下图为一个可行的电路结构。

image.png  


回复

2576

帖子

0

资源

五彩晶圆(中级)

第二、频谱分析仪的分辨率。

扫描调谐式频谱分析仪的分辨率(解析频宽)取决于其中选频放大器的通带宽度。本题目要求的分辨率为100kHz,中频频率为10MHz,如果采用单级滤波器则其等效Q值为100,稍高了一些,所以应该采用2级或3级滤波器。

另外一种方法是采用二次混频。将第一次混频后的频率称为第一中频,然后用一个二次混频的本振(第二本振)与第一中频信号混频,再用一个选频放大器将二次混频后的差频(第二中频)选出。由于第二中频可以选得远低于第一中频,所以无需很高Q值的滤波器即可得到很高的分辨率。例如本振II的频率为10.5MHz,选频放大器II的中心频率是0.5MHz,则选频网络的综合Q值等于5就可以使解析带宽等于100kHz,若做到综合Q值等于50则可使解析带宽达到10kHz

采用二次混频后电路结构如下(此图仅显示选频网络的结构,未包含选频放大以后的幅度检测等部分):

image.png  

商品的频谱分析仪中选频放大器的带宽是可以分档改变的,使得使用者可以在频率分辨率与测量精度两者之间获得合适的选择。在本题的方案中可以将这一点作为发挥的一部分,例如可设置解析频宽为100kHz10kHz两档。注意当解析频宽变窄后通常要求频率步进值同步降低,这还涉及前面信号源(频率合成器)的设计,所以需要作通盘考虑。


回复

2576

帖子

0

资源

五彩晶圆(中级)

第三、定标与校正。

频谱分析仪是一个定量分析仪器,所以需要对它进行定标,以校正其中放大器、滤波器等模块的增益,包括增益的非线性与幅频特性。

在商品频谱分析仪中有一个校正功能,可以通过对仪器自身的校正信号进行测量后得到校正系数并由微处理器处理。对于本题来说,虽然不必像商品仪器那样有专门的校正环节,但是对于整个信号通道的校正还是需要的。可以通过预先测量,将校正系数存入MPU,实际工作时直接查表完成校正即可。

 

附:本文中提到的参考文献是Roland E. Best著《Phase-Loched Loops: Design, Simulation, and Applications (5th Edition)》,有清华大学出版社出版的中文翻译版。

 


回复

390

帖子

0

资源

纯净的硅(初级)

厉害。


回复

26

帖子

3

资源

一粒金砂(中级)

好强


回复

26

帖子

3

资源

一粒金砂(中级)

十五字十五字十五字十五字十五字


回复

77

帖子

17

资源

一粒金砂(中级)

太猛了,这本科生能做出来很牛逼了,想想自己本科都在混。。。。


回复
您需要登录后才可以回帖 登录 | 注册

查找数据手册?

EEWorld Datasheet 技术支持

最新文章 更多>>
    关闭
    站长推荐上一条 1/9 下一条

    About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

    站点相关: 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

    北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

    电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2022 EEWORLD.com.cn, Inc. All rights reserved
    快速回复 返回顶部 返回列表