2.1G和3.5G频段上行覆盖能力实测
选取潍坊市开发区谷德广场基站进行测试,由于目前尚未有支持2.1G的NR终端,因此实地测试时,同站部署2.1G 4T4R LTE设备与3.5G 64TR NR设备,对 3.5G与2.1G频段上行覆盖能力进行实地对比测试。
3.1 测试参数设置
a)同站部署2.1G 4T4R LTE设备与3.5G 64TR NR设备,设置相同的挂高、方向角、下倾角等参数。测试时通过临时关闭周围基站、调整发射功率等手段使主测小区覆盖范围扩大至500 m以上。
b)3.5G基站配置情况为:功率配置为200 W,SSB-RS参数为17.8 dBm,NR下行中心载频3 550 MHz,带宽100 MHz;下上行时隙配比7∶3。SA终端天线配置要求2T4R,最大发射功率为26 dBm。2.1G基站配置为:功率配置为4×40 W;CRS RS参数设置为21.2 dBm;SA终端天线配置要求1T4R,最大发射功率为23 dBm。
对2.1G和3.5G频段的覆盖情况进行测试,选择2.1G与3.5G频段主瓣法线方向、挂高、方向角、下倾角(包含电子下倾)和功率谱密度相同的扇区进行测试,相关的CQT及DT测试路线示意图如下所示:
a)2部终端并排放置与车内桌面或座位上,分别锁频3.5和2.1 GHz,各自发起满 buffer FTP上行业务并保持。
b)网管侧实时记录测试时间内主测小区的上行底噪等信息。
c)测试车携带测试终端及路测工具沿预定路线慢速移动(不高于5 km/h),遍历主测小区内道路,且测试时间不小于1 h。
d)如果业务掉线,记录掉线信息,在附近重新发起数据业务,继续路测。
e)路测软件按要求实时记录整个测试过程中的LOG数据。
在进行深度覆盖CQT测试时,按照图2在3.5G和2.1G小区主瓣法线方向由近及远选取不少于7栋楼宇作为CQT测试楼宇,直至楼宇距离基站500 m以外或无法接入为止。
a)每栋待测楼宇选择高、中、低层分别进行测试,优选1层、3层、5层进行测试。
b)2部终端并排放置,分别锁频3.5 GHz和2.1 GHz后,在各楼宇内测试点发起满 buffer FTP上行业务,遍历楼内道路并至少保持业务1 min;若测试楼宇内无法完成接入,详细记录测试现象。
c)保持站高、下倾角不变,将两主测小区顺时针旋转30°(邻近小区按需调整),在原测试位置,按照相同的测试路线,重复步骤(b)。
2.1G与3.5G单小区上行覆盖CQT测试对比结果如图3所示。
由图3测试结果可知,在小区覆盖边缘(LTE RSRP<-105 dBm)情况下,2.1G频段近似覆盖概率为94%,3.5G频段近似覆盖概率为31%。在深度覆盖情况下,CQT测试3.5G频段RSRP值较2.1G频段少6~7 dB,说明在深度覆盖方面3.5G频段性能较2.1G频段差。
在进行DT测试数据分析中,LTE 2.1G手机与NR 3.5G手机同位置/同时在小区内进行拉网测试,为便于对比分析,把相同位置NR与LTE速率按照LTE RSRP归一化处理。
以现网实际道路覆盖测试2.1G与3.5G频段,选择2.1G与3.5G频段主瓣法线方向、挂高、方向角、下倾角(包含电子下倾)和功率谱密度相同的扇区。DT测试轨迹结果如图4所示。
通过路测数据RSRP对比分析,2.1G频段测试的平均电平值为-97 dBm;而3.5G频段测试的平均电平值为-105 dBm,且部分测试区域脱网情况严重。
随着覆盖距离的增加,在非视距场景下3.5G的信号衰落大于2.1G,且两者信号强度差异随着覆盖距离的增加而继续增大,数据分析情况如图5所示。
由图5数据分析可知,在覆盖距离较近时,视距场景内 3.5G的信号接收强度与2.1G相差约为7 dB,在覆盖距离较远处,非视距场景内两者信号强度相差14dB。
另外,从小区边缘覆盖情况对3.5G和2.1G进行分析,如图6所示。
图6DT测试小区边缘覆盖情况分析
由图6分析可知,在小区边缘速度为1 Mbit/s时,2.1G的接收信号为-115 dBm,而3.5G的接收信号为-106 dBm, LTE2.1G与NR3.5在现网实际环境中上行覆盖差异为9 dB。
对上行速率进行了对比分析,信号强度在-98 dBm时,3.5GNR的上行速率明显高于2.1G频段。
在中国联通和中国电信共建共享大原则确定的前提下,语音承载方案逐渐向VoNR的方向演进。在NSA组网阶段时,通过VoLTE灵活分配至中国联通或中国电信的LTE网络来承载。在SA组网阶段时,初期可以通过EPS回落至LTE网络,后续在2.1G频段上平滑开启VoNR功能。
对VoLTE和WCDMA网络语音承载进行对比分析,通过分析MOS值和RSRP数据,可发现2.1G频段上VoNR的语音质量强于WCDMA网络的语音质量。
通过前面的分析可知,2.1G频段能够有效增强3.5G频段的容量和覆盖,但2.1G频段带宽不如3.5G频段带宽资源丰富,且3.5GNR设备产业链相对成熟。综合分析,对2.1G和3.5G频段的应用,总结分析如下。
a)由于2.1G NR设备产业链还不成熟,5G网络建设初期建议以3.5G网络为打底网,实现连续覆盖。后续加速推进2G、3G网络的减频退频,适时重耕2.1G频段,高低频协同打造差异化5G网络。
b)5G网络采用2.1G与3.5G频段混合组网,是建设优质5G网络的重要思路。2.1G频段可提供上行容量补充及深度覆盖延伸,根据建设需求灵活组网,提升用户感知,增强中国联通品牌影响力。
c)3G/4G/5G混模组网可利用现网设备软件升级开通5G业务,在降低5G网络建设成本的同时,深度挖掘现网设备能力,实现资源利用最大化。同时也为后续网络结构调整提供前提条件。
本文从链路预算和实地测试2个方面对2.1G和3.5G频段的覆盖性能进行了对比分析,3.5G频段信号衰减较大,在深度覆盖方面3.5G频段性能较2.1G频段差。在相同的边缘速率下3.5G频段上行覆盖比2.1G频段差9 dB。通过理论分析及实地测试,发现2.1G频段能够有效增强3.5G频段的容量和覆盖范围。5G网络可采用2.1G与3.5G频段混合组网,能够增强上行覆盖能力,进而满足5G行业应用的上行容量和时延的需求。现网2.1G频段及设备重耕至5G能够提升5G网络建设速度,并同时减少建设资源投入,降低建设难度,是提升5G网络建设效率的重要手段。