社区导航

 

搜索
查看: 857|回复: 1

[经验] 无人机常用算法——卡尔曼滤波器(一)

[复制链接]

161

TA的帖子

187

TA的资源

纯净的硅(中级)

Rank: 5Rank: 5

发表于 2019-5-14 09:51 | 显示全部楼层 |阅读模式
一、卡尔曼滤波的初步认识
1.1 关于卡尔曼
在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!

卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930 年出生于匈牙利首都布达佩斯。1953,1954 年于麻省理工学院分别获得电机工程学士及硕士学位。1957 年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960 年发表的论文《A New Approach to Linear Filtering andPrediction Problems》(线性滤波与预测问题的新方法)。

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30 年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

1.2 卡尔曼滤波器的举例说明
为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5 条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5 条公式。在介绍他的5 条公式之前,先让我们来根据下面的例子一步一步的探索。


假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。


好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

假如我们要估算k 时刻的是实际温度值。首先你要根据k-1 时刻的温度值,来预测k 时刻的温度。因为你相信温度是恒定的,所以你会得到k 时刻的温度预测值是跟k-1 时刻一样的,假设是23 度,同时该值的高斯噪声的偏差是5 度(5 是这样得到的:如果k-1 时刻估算出的最优温度值的偏差是你对自己预测的不确定度是4 度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k 时刻的温度值,假设是25 度,同时该值的偏差是4 度。

由于我们用于估算k 时刻的实际温度有两个温度值,分别是23 度和25 度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance 来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k 时刻的实际温度值是:23+0.78*(25-23)=24.56 度。可以看出,因为温度计的covariance 比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。


现在我们已经得到k 时刻的最优温度值了,下一步就是要进入k+1 时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1 时刻之前,我们还要算出k 时刻那个最优值(24.56 度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5 就是上面的k 时刻你预测的那个23度温度值的偏差,得出的2.35 就是进入k+1 时刻以后k 时刻估算出的最优温度值的偏差(对应于上面的3)。

就是这样,卡尔曼滤波器就不断的把covariance 递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!下面就要言归正传,讨论真正工程系统上的卡尔曼。

此帖出自电子竞赛论坛


回复

使用道具 举报

174

TA的帖子

0

TA的资源

宇宙尘埃

发表于 2019-5-14 11:09 | 显示全部楼层
谢谢分享!


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

关闭

站长推荐上一条 /6 下一条

  • 论坛活动 E手掌握

    扫码关注
    EEWORLD 官方微信

  • EE福利  唾手可得

    扫码关注
    EE福利 唾手可得

Archiver|手机版|小黑屋|电子工程世界 ( 京ICP证 060456 )

GMT+8, 2020-1-27 02:47 , Processed in 0.102241 second(s), 16 queries , Gzip On, MemCache On.

快速回复 返回顶部 返回列表