社区导航

 
查看: 234|回复: 0

[资料分享] 单片机的延时与中断问题及解决方法

[复制链接]

2620

TA的帖子

0

TA的资源

一粒金砂(中级)

Rank: 2

发表于 2018-10-11 21:26:19 | 显示全部楼层 |阅读模式
volatile用于防止相关变量被优化。

例如对外部寄存器的读写。对有些外部设备的寄存器来说,读写操作可能都会引发一定硬件操作,但是如果不加volatile,编译器会把这些寄存器作为普通变量处理,例如连续多次的对同一地址写入,会被优化为只有最后一次的写入。实际上,网卡的数据发送,就是按顺序连续往一个同地址写入数据,如果被优化,网卡将不能正常驱动。对于外部寄存器的读写,经常用 XBYTE,其实你看一下XBYTE的原型就知道了,里面也是有个volatile的。
另一个使用场合是中断。
如果一个全局变量,在中断函数和普通函数里都用到过,那最好对这个变量加volatile修饰。否则普通函数里,可能会仅从寄存器里读取这个变量以便加快速度,而不去实际地址读取该变量。

很多人对Volatile都不太了解,其实Volatile是由于编译器优化所造成的一个Bug而引入的关键字。
int a = 10;
int b = a;
int c = a;
理论上来讲每次使用a的时候都应该从a的地址来读取变量值,但是这存在一个效率问题,就是每次使用a都要去内存中取变量值,然后再通过系统总线传到CPU处理,这样开销会很大。所以那些编译器优化者故作聪明,把a读进CPU的cache里,像上面的代码,假如a在赋值期间没有被改变,就直接从CPU的cache里取a的副本来进行赋值。但是bug也显而易见,当a在赋给b之后,可能a已经被另一个线程改变而重新写回了内存,但这个线程并不知道,依旧按照原来的计划从CPU的cache里读a的副本进来赋值给c,结果不幸发生了。
于是编译器的开发者为了补救这一bug,提供了一个Volatile让开发人员为他们的过失埋单,或者说提供给开发人员了一个选择效率的权利。当变量加上了Volatile时,编译器就老老实实的每次都从内存中读取这个变量值,否则就还按照优化的方案从cache里读。

volatile的本意是一般有两种说法--1.“暂态的”;2.“易变的”。
这两种说法都有可行。但是究竟volatile是什么意思,现举例说明(以Keil-c与a51为例
例子来自Keil FQA),看完例子后你应该明白volatile的意思了,如果还不明白,那只好
再看一遍了。


例1.

void main (void)
{
volatile int i;
int j;

i = 1; //1 不被优化 i=1
i = 2; //2 不被优化 i=1
i = 3; //3 不被优化 i=1

j = 1; //4 被优化
j = 2; //5 被优化
j = 3; //6 j = 3
}
---------------------------------------------------------------------
例2.

函数:

void func (void)
{
unsigned char xdata xdata_junk;
unsigned char xdata *p = &xdata_junk;
unsigned char t1, t2;

t1 = *p;
t2 = *p;
}

编译的汇编为:

0000 7E00 R MOV R6,#HIGH xdata_junk
0002 7F00 R MOV R7,#LOW xdata_junk
;---- Variable 'p' assigned to Register 'R6/R7' ----

0004 8F82 MOV DPL,R7
0006 8E83 MOV DPH,R6

;!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 注意
0008 E0 MOVX A,@DPTR
0009 F500 R MOV t1,A

000B F500 R MOV t2,A
;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
000D 22 RET

将函数变为:
void func (void)
{
volatile unsigned char xdata xdata_junk;
volatile unsigned char xdata *p = &xdata_junk;
unsigned char t1, t2;

t1 = *p;
t2 = *p;
}

编译的汇编为:
0000 7E00 R MOV R6,#HIGH xdata_junk
0002 7F00 R MOV R7,#LOW xdata_junk
;---- Variable 'p' assigned to Register 'R6/R7' ----

0004 8F82 MOV DPL,R7
0006 8E83 MOV DPH,R6

;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
0008 E0 MOVX A,@DPTR
0009 F500 R MOV t1,A ;a处

000B E0 MOVX A,@DPTR
000C F500 R MOV t2,A
;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

000E 22 RET


比较结果可以看出来,未用volatile关键字时,只从*p所指的地址读一次
如在a处*p的内容有变化,则t2得到的则不是真正*p的内容。

---------------------------------------------------------------------
例3


volatile unsigned char bdata var; // use volatile keyword here
sbit var_0 = var^0;
sbit var_1 = var^1;
unsigned char xdata values[10];

void main (void) {
unsigned char i;

for (i = 0; i < sizeof (values); i++) {
var = values[i];
if (var_0) {
var_1 = 1; //a处

values[i] = var; // without the volatile keyword, the compiler
// assumes that 'var' is unmodified and does not
// reload the variable content.
}
}
}


在此例中,如在a处到下一句运行前,var如有变化则不会,如var=0xff; 则在
values[i] = var;得到的还是values[i] = 1;

---------------------------------------------------------------------
应用举例:

例1.
#define DBYTE ((unsigned char volatile data *) 0)

说明:此处不用volatile关键字,可能得不到真正的内容。
---------------------------------------------------------------------

例2.


#define TEST_VOLATILE_C

//***************************************************************
// verwendete Include Dateien
//***************************************************************
#if __C51__ < 600
#error: !! Keil 版本不正确
#endif

//***************************************************************
// 函数 void v_IntOccured(void)
//***************************************************************
extern void v_IntOccured(void);

//***************************************************************
// 变量定义
//***************************************************************
char xdata cValue1; //全局xdata
char volatile xdata cValue2; //全局xdata

//***************************************************************
// 函数: v_ExtInt0()
// 版本:
// 参数:
// 用途:cValue1++,cValue2++
//***************************************************************
void v_ExtInt0(void) interrupt 0 {
cValue1++;
cValue2++;
}

//***************************************************************
// 函数: main()
// 版本:
// 参数:
// 用途:测试volatile
//***************************************************************

void main() {
char cErg;

//1. 使cErg=cValue1;
cErg = cValue1;

//2. 在此处仿真时手动产生中断INT0,使cValue1++; cValue2++
if (cValue1 != cErg)
v_IntOccured();

//3. 使cErg=cValue2;
cErg = cValue2;

//4. 在此处仿真时手动产生中断INT0,使cValue1++; cValue2++
if (cValue2 != cErg)
v_IntOccured();

//5. 完成
while (1);
}

//***************************************************************
// 函数: v_IntOccured()
// 版本:
// 参数:
// 用途: 死循环
//***************************************************************
void v_IntOccured() {
while(1);
}


仿真可以看出,在没有用volatile时,即2处,程序不能进入v_IntOccured();
但在4处可以进入v_IntOccured();



回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

  • 论坛活动 E手掌握

    扫码关注
    EEWORLD 官方微信

  • EE福利  唾手可得

    扫码关注
    EE福利 唾手可得

Archiver|手机版|小黑屋|电子工程世界 ( 京ICP证 060456 )

GMT+8, 2018-12-10 21:31 , Processed in 0.211239 second(s), 15 queries , Gzip On, MemCache On.

快速回复 返回顶部 返回列表